



Vol. 6 | No.3 | 245-257 | July- September | 2013 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in

# EVALUATION OF GROUNDWATER QUALITY WITH REGARD TO LIVESTOCK USE FROM SANGAMNER AREA, AHMEDNAGAR DISTRICT, MAHARASHTRA, INDIA

# K.K. Deshmukh

Post-Graduate Research Center in Chemistry, Sangamner Nagarpalika Arts, D.J. Malpani Commerce & B.N. Sarda Science College, Sangamner – 422605, Dist. Ahmednagar, (M.S.) E-mail: keshav\_deshmukh13@yahoo.in

#### **ABSTRACT**

Livestock is a key asset for poor people, fulfilling multiple economic, social and risk management functions. In India, smallholder farmers rely greatly for their survival on livestock keeping which is a safety valve for them. There is a need to look into the welfare of livestock such as feed, water and health etc. Health of livestock similar to human being is mainly affected by water they drink. Cows, buffaloes, bullocks, sheep, goats are common livestock in Sangamner area. These livestock and dairy serve as the major source of earning to farmers besides agriculture. Every farmer in the area maintains some kind of livestock population. It is, therefore necessary to evaluate the quality of groundwater for the consumption of livestock population. 68 groundwater samples were analyzed for various parameters such as pH, EC, TDS, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup> and NO<sub>3</sub><sup>-</sup> during pre and post monsoon season using standard methods. It was found that the parameters like EC, total hardness and nitrate were exceeded the limit recommended for the use of water for livestock and poultry suggested by National Research Council. Higher EC were observed in low-lying area which are poorly drained and are under intensive agriculture. Wide variations in the response of livestock to saline water were observed. Some of the major factors that influence the response of livestock to saline water depend on kind of livestock, age, sex, pregnancy and lactation, intensity of work performed by the animal and climatic conditions. The cattles from some of the areas were to allowed drink the groundwater from the area, they start suffering from diseases and their pregnancy period was prolonged. Educating the farmers to adopt better farm management and better livestock care has been suggested to reduce the problem of groundwater deterioration and welfare of livestock population.

**Keywords:** Groundwater quality, livestock use, National Research Council, groundwater deterioration.

©2013 RASĀYAN. All rights reserved

## **INTRODUCTION**

Water is one of the foremost essential components and it is essentially required by all living organisms. The quality of water is of vital concern to all living beings. About 97.2% of water on earth is salty and 2.8% is present as fresh water from which about 20% constitutes groundwater<sup>1</sup>. Therefore determining groundwater quality is important to observe the suitability of water for particular purpose through anthropogenic and other sources like different land conditions, rain conditions, use of different chemical pesticides and different depth of bore wells<sup>2</sup>. Human activities and livestock farming also have a significant effect on groundwater quality.

Livestock require water for survival as water is necessary for the transport of nutrients, waste products and harmones. Often there is a belief that animals will drink any type of water but it was observed that the animals usually drink poor quality water only when there is no option. Livestock plays an important role in agricultural economy and it is absolutely essential to look into needs with respect to their water quality. Good quality water is essential for the production of livestock and poultry<sup>3</sup>. Some of the major factors that influence the response of livestock to saline water depend on the kind of livestock, age, sex, pregnancy, lactation, intensity of work performed by animals and climatic conditions. Water quality can affect both the total water consumption of livestock and the health of that livestock. Objectionable taste and odor will

discourage livestock water consumption, reduce useless gain. Several studies on groundwater quality with regard to livestock use have been reported <sup>4-10</sup>.

Sangamner is in semi-arid region with low rainfall. There is greater dependence on the groundwater. Groundwater is mainly used for drinking, washing bathing, irrigation and for livestock raring in the area. However, the establishment of industrial estate by the Govt. of Maharashtra at Sangamner and growth of sugarcane and allied industries has staring deteriorating the groundwater quality in some parts of the area. Cows, buffaloes, bullocks, sheep and goats are common livestock in the area. These livestock and diary serve as the major source of earning to farmers besides agriculture. Their basis input i.e. feed has been sourced from agriculture. On an average every farmer in the area maintains some kind of livestock population. It is, therefore, necessary to evaluate the quality of water for the consumption of livestock population. In the majority part of the study area, poultry and dairy farming is the backbone of rural economy. Since the soils from the area have started deteriorating due to excess use of fertilizers, use of saline water and practicing of mono culture type of cropping pattern, the crop yield have gone down. This is in turn affected the economy of the family. Thus farmers have developed the dairy farming to a large extent. There is a large network of co-operative dairies in the area. This agro-based industry is developed due to deterioration in the quality of groundwater. Researchers have carried out an extensive work on groundwater quality for various purposes in the area 11-14. But there is however no data available about the groundwater quality with regard to livestock use of Sangamner area. In this view, an attempt has been made to evaluate the groundwater quality of Sangamner area.

## Study Area

Sangamner area is located in the northern part of the Ahmednagar district of Maharashtra State. The tahsil lies between 18°36' N to 19° 1'N latitude and 74° 1'W to 74° 56'W longitude. The Sangamner town is located on the confluence of the Mahalungi and the Pravara River. It is a Taluka head quarter which is at a distance of 150 km from Pune, on Pune - Nasik National Highway No. NH-50 (Fig.-1).

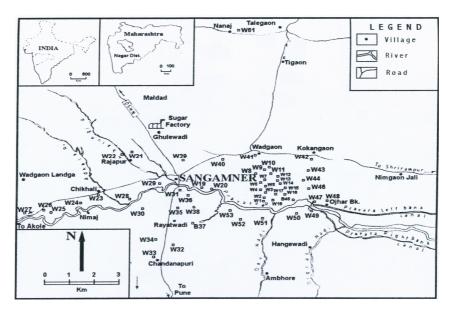



Fig.-1: Locations of ground water sampling stations in the Study area.

The area is drained by the Pravara River which is a tributary of Godavari and has its origin in the hilly region of Western Ghats. Geologically, basalt underlay the Pravara basin, which is characterized by thick alluvium (upto 35 m.). Several dams and weirs have been constructed across Pravara River. Because of construction of Bhandardara Dam in the source region of Pravara River, the valley has been brought

under intensive agriculture with sugarcane as a single dominant crop. Subsequent to the establishment of co-operative sugar mill at Sangamner in 1967, the agriculture in the area has witnessed rapid changes in the cropping pattern. In addition to sugar industry, several allied industrial units have also come up in the area. The effluents from sugar industry, with little or no treatment have been stored in lagoons and then discharged into the natural stream flowing through the agricultural area for a distance of about 8 to 9 km. This effluent stream finally meets the Pravara River at Sangamner and deteriorate the quality of water. In some remote areas, river and pond water is also used for various domestic purposes including cooking drinking and livestock raring. The medical facilities in this area are also not appropriate. Majority of the people are farmers residing in the fields along with livestock near the wells and on the bank of river.

#### **EXPERIMENTAL**

A network of 68 groundwater-sampling stations distributed over mainly the irrigated region of the Sangamner area. The samples were collected for two seasons i.e. pre monsoon (May) and Post monsoon (November). The 54 of them were from irrigated area and 14 from non-irrigated area. Sampling locations were chosen on the basis of pilot geological and hydro-geological survey of the area. The samples from dug / bore wells were collected on the basis its use for drinking / domestics purposes. The samples were collected in polyethylene bottles of one-liter capacity. The care was taken to collect samples after pumping for some time. To determine the suitability of groundwater for livestock, the parameters like pH, EC, alkalinity, hardness, chlorides, sulphate, nitrate and sodium were analysed. The pH, electrical conductivity (EC) were measured in the field. The samples were then brought to the laboratory for further chemical analysis. The analysis was carried out in the laboratory by using the procedures given by APHA, AWWA, WPCF <sup>15</sup>. Using titrimetric methods performed the analysis of chloride (Cl<sup>-</sup>), total alkalinity as CaCO<sub>3</sub>, Calcium (Ca<sup>2+</sup>) and total hardness as CaCO<sub>3</sub> (TH). While nitrate and sulphate were analyzed by spectrophotometric methods and the alkali element sodium were detected by flame photometer (E, 850 A, Equiptronics). The results of the groundwater analysis are presented in Table-1 and 2.

Table-1: Physico-chemical data of groundwater samples from Sangamner area, Ahmednagar district, Maharashtra (Pre - monsoon).

| S. No. | WT   | pН  | EC    | TDS  | Na  | Ca  | Mg  | Cl  | $HCO_3$ | $SO_4$ | $NO_3$ | TH  |
|--------|------|-----|-------|------|-----|-----|-----|-----|---------|--------|--------|-----|
| W1     | 3.03 | 8.2 | 4630  | 3010 | 260 | 19  | 25  | 129 | 689     | 161    | 36     | 150 |
| W2     | 2.12 | 8   | 4930  | 3205 | 348 | 27  | 36  | 184 | 719     | 156    | 29     | 210 |
| W3     | 1.51 | 8.4 | 4870  | 3166 | 232 | 45  | 52  | 186 | 572     | 158    | 8      | 324 |
| W4     | 3.63 | 8   | 5630  | 3660 | 300 | 42  | 47  | 194 | 572     | 168    | 52     | 296 |
| W5     | 2.42 | 8.2 | 6420  | 4173 | 360 | 25  | 35  | 198 | 602     | 166    | 29     | 204 |
| W6     | 7.57 | 7.8 | 7161  | 4655 | 376 | 66  | 80  | 284 | 673     | 165    | 58     | 492 |
| W7     | 2.42 | 8   | 4670  | 3036 | 260 | 39  | 49  | 161 | 592     | 163    | 36     | 300 |
| W8     | 4.54 | 8.2 | 3860  | 2509 | 216 | 24  | 41  | 123 | 490     | 162    | 49     | 228 |
| W9     | 6.06 | 7.9 | 5760  | 3744 | 192 | 90  | 102 | 307 | 556     | 160    | 46     | 644 |
| W10    | 7.57 | 7.6 | 5320  | 3458 | 172 | 116 | 93  | 272 | 393     | 164    | 56     | 672 |
| W11    | 6.06 | 7.7 | 10360 | 6734 | 380 | 148 | 131 | 533 | 398     | 167    | 40     | 904 |
| W12    | 5.75 | 7.7 | 10250 | 6663 | 380 | 87  | 146 | 598 | 536     | 165    | 72     | 814 |
| W13    | 1.51 | 8   | 5630  | 3660 | 187 | 70  | 105 | 360 | 260     | 161    | 39     | 609 |
| W14    | 4.54 | 8.2 | 8460  | 5499 | 340 | 56  | 103 | 439 | 587     | 160    | 70     | 562 |
| W15    | 3.03 | 8   | 6620  | 4303 | 284 | 65  | 82  | 302 | 602     | 166    | 47     | 500 |
| W16    | 3.93 | 8.3 | 5290  | 3439 | 210 | 18  | 27  | 110 | 550     | 164    | 30     | 154 |
| W17    | 3.63 | 8.4 | 5160  | 3354 | 280 | 21  | 24  | 146 | 583     | 161    | 52     | 150 |
| W18    | 2.72 | 8.3 | 6770  | 4401 | 332 | 38  | 35  | 216 | 755     | 159    | 68     | 238 |
| W19    | 9.09 | 8.2 | 6300  | 4095 | 272 | 62  | 75  | 243 | 699     | 158    | 81     | 462 |
| W20    | 10.6 | 7.8 | 6010  | 3907 | 232 | 67  | 81  | 252 | 694     | 162    | 58     | 500 |
| W21    | 18.8 | 8.2 | 3780  | 2457 | 134 | 25  | 54  | 103 | 485     | 151    | 52     | 284 |

| W23     7.57     8     6690     4349     280     31     18     253     538     157     44     15       W24     9.09     7.9     7240     4706     272     44     24     193     592     153     66     20       W25     18.2     7.8     5610     3647     210     44     24     193     592     153     66     22       W26     8.18     8.1     1370     891     16     25     29     51     142     40     42     18       W27     12.1     8.5     720     468     30     13     7     14     86     28     26     6       W28     12.1     8     4870     3166     260     38     35     142     614     49     40     48       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31                                                                                                                                                  |     | 1      |     |      | ı    |      |     |    |     |     | 1   |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|------|------|------|-----|----|-----|-----|-----|-----|-----|
| W24     9.09     7.9     7240     4706     272     44     24     193     592     153     66     20       W25     18.2     7.8     5610     3647     210     44     39     211     507     154     48     27       W26     8.18     8.1     1370     891     16     25     29     51     142     40     42     18       W27     12.1     8.5     720     468     30     13     7     14     86     28     26     6       W28     12.1     8     4870     3166     260     38     35     142     614     158     34     24       W29     12.7     8.2     3970     2581     208     28     29     107     568     149     40     18       W31     13.6     7.6     4470     2906     136     51     53     149     466     123     57     34                                                                                                                                                         | W22 |        |     |      | 4973 | 190  | 112 |    |     |     | 153 | 89  | 670 |
| W25     18.2     7.8     5610     3647     210     44     39     211     507     154     48     27       W26     8.18     8.1     1370     891     16     25     29     51     142     40     42     18       W27     12.1     8.5     720     468     30     13     7     14     86     28     26     6       W28     12.1     8     4870     3166     260     38     35     142     614     158     34     29       W29     12.7     8.2     3970     2581     208     28     29     107     568     149     40     18       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     35                                                                                                                                                         |     |        |     |      |      |      |     |    |     |     |     |     | 152 |
| W26     8.18     8.1     1370     891     16     25     29     51     142     40     42     18       W27     12.1     8.5     720     468     30     13     7     14     86     28     26     6       W28     12.1     8     4870     3166     260     38     35     142     614     158     34     24       W29     12.7     8.2     3970     2581     208     29     107     568     149     40     18       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W33 <th< td=""><td></td><td></td><td>7.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>592</td><td>153</td><td>66</td><td>208</td></th<> |     |        | 7.9 |      |      |      |     |    |     | 592 | 153 | 66  | 208 |
| W27     12.1     8.5     720     468     30     13     7     14     86     28     26     6       W28     12.1     8     4870     3166     260     38     35     142     614     158     34     24       W29     12.7     8.2     3970     2581     208     28     29     107     568     149     40     18       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     33       W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27                                                                                                                                                         |     |        |     |      |      |      |     |    |     |     |     |     | 270 |
| W28     12.1     8     4870     3166     260     38     35     142     614     158     34     24       W29     12.7     8.2     3970     2581     208     28     29     107     568     149     40     18       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     42                                                                                                                                                 |     |        |     |      |      |      | 25  | 29 |     |     |     |     | 182 |
| W29     12.7     8.2     3970     2581     208     28     29     107     568     149     40     18       W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     66     144     369     170     28     43       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43                                                                                                                                               |     |        |     |      |      |      |     |    |     |     |     |     | 62  |
| W30     10.6     7.6     4470     2906     136     51     53     149     466     123     57     34       W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     42       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36                                                                                                                                                |     |        |     |      |      |      |     |    |     |     |     |     | 240 |
| W31     13.6     7.4     4640     3016     68     52     109     220     252     141     62     37       W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     43       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     44     44 <                                                                                                                                          |     |        |     |      |      |      |     |    |     |     |     |     | 188 |
| W32     14.8     7.4     2860     1859     44     40     46     89     288     101     29     28       W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     42       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     617                                                                                                                                                 |     |        |     |      |      |      |     |    |     |     |     |     | 342 |
| W33     15.2     8.2     2870     1866     78     35     44     85     232     118     52     27       W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     43       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     42       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35                                                                                                                                                  |     |        |     |      |      |      |     |    |     |     |     |     | 378 |
| W34     12.7     7.8     4740     3081     130     64     68     239     257     124     37     43       W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35                                                                                                                                                 |     |        |     |      |      |      |     |    |     |     |     |     | 288 |
| W35     18.1     7.8     4260     2769     118     64     66     144     369     170     28     43       W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34                                                                                                                                                   |     |        |     |      |      |      |     |    |     |     |     |     | 270 |
| W36     19.7     7.9     3650     2373     88     40     65     109     298     145     40     36       B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28                                                                                                                                                     |     |        |     |      |      |      |     |    |     |     |     |     | 438 |
| B37     -     7.8     4600     2990     124     51     69     176     339     154     44     41       W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70                                                                                                                                                   |     |        |     |      |      |      |     |    |     |     |     |     | 432 |
| W38     7.57     7.5     5700     3705     110     88     111     369     383     156     29     67       W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75                                                                                                                                               |     | 19.7   |     |      |      |      |     |    |     |     |     |     | 366 |
| W39     22.7     8.4     2770     1801     122     20     31     105     457     76     36     17       W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31                                                                                                                                                   |     | - 7.57 |     |      |      |      |     |    |     |     |     |     | 410 |
| W40     19.7     7.6     2550     1658     52     60     48     105     353     69     48     35       W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17                                                                                                                                                   |     |        |     |      |      |      |     |    |     |     |     |     | 674 |
| W41     15.2     7.8     2140     1391     72     48     56     90     364     123     46     34       W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23                                                                                                                                                 |     |        |     |      |      |      |     |    |     |     |     |     | 176 |
| W42     12.1     8     3300     2145     116     51     37     156     318     122     61     28       W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21                                                                                                                                                |     |        |     |      |      |      |     |    |     |     |     |     | 358 |
| W43     12.1     7.6     5930     3855     126     97     113     335     453     168     57     70       W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6                                                                                                                                                 |     |        |     |      |      |      |     |    |     |     |     |     | 346 |
| W44     8.48     7.6     4500     2925     124     172     79     300     362     155     65     75       B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30                                                                                                                                                    |     |        |     |      |      |      |     |    |     |     |     |     |     |
| B45     -     7.6     3480     2262     212     64     35     141     525     156     37     31       W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>754</td></t<>               |     |        |     |      |      |      |     |    |     |     |     |     | 754 |
| W46     10.9     8.2     4050     2633     112     28     24     34     339     122     52     17       W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20                                                                                                                                                    |     | 0.40   |     |      |      |      |     |    |     |     |     |     | 318 |
| W47     9.09     8.1     1610     1047     146     33     38     100     563     155     26     23       W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28                                                                                                                                                    |     | 10.0   |     |      |      |      |     |    |     |     |     |     | 170 |
| W48     1.51     7.9     2700     1755     116     35     32     91     441     153     46     21       W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       <                                                                                                                                              |     |        |     |      |      |      |     |    |     |     |     |     | 238 |
| W49     12.1     8.6     2070     1346     224     13     7     28     565     105     36     6       W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                             |     |        |     |      |      |      |     |    |     |     |     |     | 218 |
| W50     19.7     8     4170     2711     140     48     44     133     499     156     53     30       W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                                                                                                                                   |     |        |     |      |      |      |     |    |     |     |     |     | 62  |
| W51     7.57     8     7350     4778     328     49     92     298     606     167     38     50       W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |      |      |      |     | -  |     |     |     |     | 300 |
| W52     4.54     8.2     1860     1209     120     30     30     122     359     129     48     20       W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |     |      |      |      |     |    |     |     |     |     | 500 |
| W53     9.09     8.2     1680     1092     126     21     57     71     436     109     36     28       W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |      |      |      |     |    |     |     |     |     | 200 |
| W54     12.1     8     5690     3699     154     48     46     212     373     156     49     31       B55     -     8.4     830     531     28     26     14     30     140     53     29     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |     |      |      |      |     |    |     |     |     |     | 286 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W54 | 12.1   |     | 5690 | 3699 | 154  |     | 46 | 212 | 373 | 156 | 49  | 310 |
| W56 757 84 580 371 25 10 16 10 116 47 22 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B55 | -      | 8.4 | 830  | 531  | 28   | 26  | 14 | 30  | 140 | 53  | 29  | 120 |
| - wo   1.51   0.4   500   5/1   25   19   10   10   110   4/   22   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W56 | 7.57   | 8.4 | 580  | 371  | 25   | 19  | 16 | 10  | 116 | 47  | 22  | 112 |
| W57 18.1 7.9 1590 1018 76 30 30 47 205 98 34 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W57 | 18.1   | 7.9 | 1590 | 1018 | 76   | 30  | 30 | 47  | 205 | 98  | 34  | 200 |
| W58   12.1   7.9   1240   794   26   35   29   41   167   71   46   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W58 | 12.1   | 7.9 | 1240 | 794  | 26   | 35  | 29 | 41  | 167 | 71  | 46  | 204 |
| W59   18.2   8.1   1390   890   56   25   22   28   172   80   56   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W59 | 18.2   | 8.1 | 1390 | 890  | 56   | 25  | 22 | 28  | 172 | 80  | 56  | 152 |
| W60     9.09     8.2     1150     736     52     20     25     24     132     92     59     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W60 | 9.09   | 8.2 | 1150 | 736  | 52   | 20  | 25 | 24  | 132 | 92  | 59  | 154 |
| W61     6.66     8     3200     2048     76     50     48     121     237     142     34     32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W61 | 6.66   | 8   | 3200 | 2048 | 76   | 50  | 48 | 121 | 237 | 142 | 34  | 322 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      | 5184 |      |     |    | 44  |     |     | 22  | 148 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      |      |      |     |    | 18  |     | 63  |     | 128 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      |      |      |     |    |     |     |     |     | 84  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      |      |      |     |    |     |     |     |     | 90  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      |      |      |     |    |     |     |     |     | 122 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |      |      |      |     |    |     |     |     |     | 120 |
| W68   19.7   8.1   360   230   34.4   26   7   9   160   37   2.4   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 19.7   | 8.1 | 360  | 230  | 34.4 | 26  | 7  | 9   | 160 | 37  | 2.4 | 92  |

# Note:

All values of the constituents are in ppm / mg/l, except pH and EC (μS/cm).
W- Dugwell, B- Borewell, TH-Total hardness.
Water Table (WT) depth is in meters.

Table-2: Physico-chemical data of groundwater samples from Sangamner area, Ahmednagar district, Maharashtra (Post - monsoon).

| S. No. | WT   | pН  | EC   | TDS  | Na  | Ca  | Mg  | Cl   | HCO <sub>3</sub> | SO <sub>4</sub> | NO <sub>3</sub> | TH   |
|--------|------|-----|------|------|-----|-----|-----|------|------------------|-----------------|-----------------|------|
| W1     | 1.81 | 8.4 | 890  | 578  | 144 | 80  | 12  | 142  | 235              | 72              | 26              | 250  |
| W2     | 1.81 | 8.1 | 4500 | 2925 | 541 | 80  | 93  | 476  | 673              | 175             | 12              | 581  |
| W3     | 1.21 | 8   | 4700 | 3055 | 532 | 150 | 148 | 675  | 651              | 171             | 9               | 984  |
| W4     | 0.6  | 8.2 | 7905 | 5138 | 829 | 120 | 141 | 937  | 666              | 177             | 3               | 880  |
| W5     | 0.9  | 8.5 | 4750 | 3087 | 560 | 138 | 106 | 582  | 589              | 169             | 2               | 781  |
| W6     | 0.3  | 7.9 | 7385 | 4761 | 529 | 228 | 288 | 930  | 827              | 181             | 13              | 1755 |
| W7     | 0.3  | 8.2 | 3620 | 2353 | 458 | 124 | 163 | 497  | 669              | 174             | 2               | 981  |
| W8     | 1.21 | 8   | 4158 | 2703 | 527 | 112 | 167 | 553  | 640              | 173             | 27              | 967  |
| W9     | 2.12 | 7.4 | 6610 | 4297 | 365 | 280 | 320 | 950  | 659              | 179             | 12              | 2016 |
| W10    | 0.9  | 7.4 | 7516 | 4885 | 425 | 320 | 340 | 1071 | 689              | 177             | 3               | 2199 |
| W11    | 2.12 | 8   | 7922 | 5149 | 648 | 388 | 321 | 1292 | 710              | 175             | 14              | 2290 |
| W12    | 1.51 | 7.8 | 9200 | 5980 | 760 | 326 | 309 | 1503 | 753              | 180             | 38              | 2333 |
| W13    | 0.9  | 7.8 | 7315 | 4755 | 516 | 216 | 392 | 1092 | 710              | 174             | 6               | 2153 |
| W14    | 0.9  | 8.2 | 8826 | 5737 | 729 | 216 | 294 | 1262 | 710              | 178             | 7               | 1749 |
| W15    | 0.9  | 7.9 | 6720 | 4368 | 540 | 220 | 248 | 923  | 735              | 170             | 14              | 1570 |
| W16    | 1.81 | 8   | 3850 | 2502 | 578 | 76  | 102 | 532  | 657              | 169             | 11              | 609  |
| W17    | 0.9  | 7.6 | 6610 | 3907 | 662 | 180 | 185 | 767  | 678              | 172             | 11              | 1211 |
| W18    | 1.21 | 8.2 | 5100 | 3315 | 488 | 104 | 136 | 639  | 622              | 168             | 2               | 819  |
| W19    | 14.5 | 8   | 5816 | 3780 | 476 | 202 | 227 | 717  | 768              | 172             | 18              | 1439 |
| W20    | 12.7 | 7.9 | 5408 | 3515 | 495 | 196 | 235 | 710  | 737              | 169             | 19              | 1457 |
| W21    | 7.57 | 8.6 | 3815 | 2480 | 418 | 100 | 124 | 667  | 615              | 144             | 21              | 761  |
| W22    | 9.09 | 7.9 | 7212 | 4688 | 623 | 268 | 289 | 1533 | 457              | 167             | 33              | 1859 |
| W23    | 4.54 | 8.3 | 7500 | 4875 | 671 | 234 | 321 | 1480 | 735              | 167             | 24              | 1486 |
| W24    | 8.18 | 8.9 | 6411 | 4167 | 681 | 140 | 170 | 1235 | 674              | 166             | 21              | 1049 |
| W25    | 4.84 | 8.3 | 5209 | 3386 | 495 | 176 | 216 | 1030 | 745              | 166             | 40              | 1328 |
| W26    | 1.51 | 8.3 | 1400 | 910  | 74  | 100 | 76  | 198  | 326              | 38              | 36              | 563  |
| W27    | 1.51 | 8.5 | 1000 | 650  | 82  | 80  | 63  | 85   | 433              | 42              | 2               | 460  |
| W28    | 3.03 | 8.4 | 5008 | 3255 | 458 | 140 | 160 | 795  | 744              | 165             | 2               | 1008 |
| W29    | 7.57 | 8.8 | 800  | 520  | 10  | 112 | 43  | 135  | 204              | 42              | 2               | 456  |
| W30    | 4.54 | 8.1 | 4304 | 2798 | 318 | 236 | 241 | 830  | 566              | 142             | 28              | 1581 |
| W31    | 2.42 | 8.2 | 4612 | 2998 | 183 | 288 | 240 | 950  | 557              | 131             | 30              | 1707 |
| W32    | 6.96 | 8.4 | 3520 | 2288 | 147 | 204 | 214 | 631  | 562              | 125             | 11              | 1391 |
| W33    | 9.09 | 8.4 | 5810 | 3776 | 188 | 304 | 457 | 1256 | 551              | 161             | 57              | 2641 |
| W34    | 6.06 | 8.2 | 5080 | 3302 | 322 | 308 | 363 | 1285 | 582              | 118             | 46              | 2264 |
| W35    | 10.6 | 8.3 | 4612 | 2997 | 199 | 328 | 214 | 837  | 533              | 126             | 38              | 1700 |
| W36    | 7.57 | 8.3 | 3540 | 2301 | 134 | 134 | 276 | 695  | 513              | 144             | 30              | 1470 |
| B37    | -    | 8.2 | 4814 | 3129 | 262 | 178 | 258 | 1008 | 502              | 167             | 39              | 1508 |
| W38    | 0.6  | 8.5 | 2913 | 1894 | 128 | 144 | 198 | 497  | 482              | 115             | 16              | 1175 |
| W39    | 12.1 | 8.5 | 2301 | 1496 | 141 | 88  | 136 | 312  | 642              | 63              | 38              | 780  |

| W40           | 12.1         | 8.5           | 2412         | 1568        | 37        | 208 | 152 | 447  | 482 | 58  | 40  | 1142 |
|---------------|--------------|---------------|--------------|-------------|-----------|-----|-----|------|-----|-----|-----|------|
| W41           | 9.09         | 8.1           | 2100         | 1365        | 65        | 182 | 120 | 319  | 523 | 112 | 30  | 948  |
| W42           | 7.57         | 8.3           | 2412         | 1568        | 142       | 152 | 232 | 525  | 597 | 104 | 87  | 1335 |
| W43           | 4.24         | 8             | 5990         | 3894        | 209       | 284 | 370 | 1093 | 528 | 163 | 52  | 2232 |
| W44           | 4.84         | 8.3           | 2716         | 1765        | 144       | 441 | 280 | 1015 | 546 | 164 | 100 | 2254 |
| B45           | -            | 8.1           | 4260         | 2769        | 232       | 188 | 143 | 489  | 594 | 163 | 58  | 1058 |
| W46           | 5.45         | 8.7           | 4698         | 3054        | 318       | 128 | 141 | 568  | 661 | 161 | 31  | 900  |
| W47           | 3.03         | 8.8           | 1580         | 1030        | 120       | 96  | 80  | 113  | 518 | 90  | 3   | 569  |
| W48           | 0.3          | 8.3           | 2896         | 1882        | 171       | 144 | 121 | 348  | 510 | 146 | 30  | 858  |
| W49           | 10.6         | 8.7           | 1986         | 1291        | 297       | 56  | 20  | 121  | 673 | 79  | 3   | 220  |
| W50           | 9.09         | 8.3           | 4164         | 2707        | 313       | 170 | 125 | 426  | 683 | 164 | 23  | 939  |
| W51           | 4.54         | 8.9           | 5574         | 3623        | 555       | 128 | 187 | 717  | 652 | 167 | 12  | 1089 |
| W52           | -            | 8.7           | 2192         | 1425        | 122       | 148 | 121 | 334  | 408 | 131 | 20  | 868  |
| W53           | 4.54         | 8.6           | 1789         | 1163        | 198       | 84  | 56  | 170  | 489 | 99  | 48  | 441  |
| W54           | 4.54         | 8.1           | 4768         | 3099        | 295       | 138 | 223 | 738  | 732 | 165 | 51  | 1263 |
| W55           | -            | 8.6           | 890          | 579         | 61        | 98  | 48  | 122  | 316 | 39  | 42  | 442  |
| W56           | 3.93         | 8.7           | 880          | 572         | 43        | 80  | 63  | 70   | 351 | 67  | 3   | 459  |
| W57           | 7.57         | 8.1           | 3090         | 2009        | 23        | 100 | 56  | 78   | 355 | 50  | 14  | 480  |
| W58           | 3.03         | 8.3           | 1390         | 904         | 52        | 124 | 73  | 174  | 377 | 55  | 69  | 610  |
| W59           | 10.6         | 8.5           | 1210         | 787         | 63        | 102 | 77  | 114  | 357 | 67  | 66  | 572  |
| W60           | 1.21         | 8.8           | 1296         | 843         | 58        | 88  | 69  | 97   | 356 | 62  | 26  | 504  |
| W61           | 7.57         | 8.4           | 3216         | 2090        | 169       | 208 | 188 | 560  | 567 | 137 | 20  | 1293 |
| W62           | 0.3          | 8.7           | 810          | 527         | 45        | 102 | 65  | 90   | 351 | 43  | 26  | 522  |
| W63           | 7.57         | 8.7           | 680          | 442         | 41        | 80  | 34  | 102  | 285 | 47  | 3   | 340  |
| W64           | 3.63         | 8.5           | 1590         | 1034        | 105       | 80  | 126 | 224  | 540 | 78  | 7   | 719  |
| W65           | 3.03         | 8.6           | 940          | 611         | 53        | 88  | 58  | 91   | 382 | 41  | 18  | 459  |
| W66           | 2.42         | 8.1           | 820          | 533         | 37        | 88  | 53  | 110  | 270 | 40  | 18  | 438  |
| W67           | 7.57         | 8             | 1080         | 702         | 25        | 144 | 90  | 102  | 467 | 45  | 13  | 730  |
| W68           | 8.18         | 7.9           | 620          | 403         | 16        | 110 | 10  | 69   | 244 | 19  | 2   | 316  |
| te· 1 All val | ues of the c | onetituante e | ra in ma/l a | veent nU or | d EC (uS/ | cm) |     |      |     |     |     |      |

Note: 1. All values of the constituents are in mg/l, except pH and EC ( $\mu$ S/cm).

- 2. Values of Fe are in ppb.
- 3. W- Dugwell, B- Borewell, TH-Total hardness.
- 4. Water Table (WT) depth is in meters.

# RESULTS AND DISCUSSION

# Total dissolved salts / electrical conductivity of groundwater with regard to livestock use

The electrical conductivity provides an indication of the total salts in the water. The electrical conductivity (EC) is expressed in  $\mu$ S/cm at 25°C approximately equal to and can be substituted for TDS without introducing error in interpretation depending on type of salts present<sup>16</sup>. The quality requirement of livestock is more or less same as that for drinking water for human consumption. However, the higher concentration of EC / TDS can be tolerated by animals<sup>17</sup>. As the concentration of salt increases above  $1000\mu$ S/cm, risk of health problems and reduced productivity in livestock may occur. Saline water toxicity upsets the electrolyte balance in animals and will result in symptoms similar to dehydration. At EC over  $10,000 \mu$ S/cm, water will not be palatable and diarrhea and weight loss can be expected. The use of such water is not recommended for animals<sup>16</sup>. The EC values from study area ranges from 840 to  $11350\mu$ S/cm and 620 to 9200  $\mu$ S/cm during pre and post

monsoon respectively. Lowing of EC in post – monsoon could be due to dilution effect caused by rainfed recharge during monsoon season leading to higher groundwater level. The higher values of EC during pre monsoon reflect concentration effect. The groundwater from the study area is classified based on the general guide to use saline water for livestock and poultry recommended by National Academy of Sciences<sup>18</sup>.

Table-3: Classification of groundwater on the basis of EC to the use of saline water for livestock and poultry<sup>18</sup> from study area.

| EC (µS/cm)     | No. and Locations of Samples  | No. and Locations of samples |
|----------------|-------------------------------|------------------------------|
| •              | (Pre monsoon)                 | (Post - Monsoon)             |
| Less than 1000 | W26,W27,W55,W56,W63,W65       | W1,W29,B55,W56,W62,W63,      |
|                | =6(8.82%)                     | W65, W66, W68 = 9 (13.23%)   |
| 1000-2999      | W40,W41,W47,W49,W52,W53,W57,  | W26,W27,W38,W39,W40,W41,     |
|                | W58,W59,W60,W61,W62,W64,W66,  | W42,W44,W47,W48,W49,W52,     |
|                | W67, W68 = 16(23.52%)         | W53,W58,W59,W60,W64,W67      |
|                |                               | =18(26.47%)                  |
| 3000-4999      | W1,W3,W7,W8,W11,W21,W29,W30,  | W2,W3,W5,W7,W18,W16,W21,     |
|                | W32,W33,W34,W35,W36,W39,W42,  | W30,W31,W32,W35,W36,W37,     |
|                | W45,W46,W48,W50 = 19 (27.94%) | W45,W46,W50,W54,W57          |
|                |                               | =19 (27.94%)                 |
| 5000-6999      | W2,W4,W5,W9,W10,W16,W17,W19,  | W9,W15,W17,W18,W19,W20,      |
|                | W20,W24,W25,W28,W31,W37,W38   | W24,W25,W28,W33,W34,W43,     |
|                | = 17(25%)                     | W51 = 13 (19.11%)            |
| 7000-10,000    | W6,W13,W14,W15,W18,W22,W23,   | W4,W6,W10,W11,W12,W13,       |
|                | W43,W51 = 9 (13.23%)          | W14,W22,W23 = 9 (13.23%)     |
| Over 10,000    | W 12 = 1(1.47 %)              | Nil                          |

It is observed that 6(8.82%) samples in pre monsoon and 9(13.23%) samples in post monsoon season show less than  $1000~\mu\text{S/cm}$  indicating relatively low level of salinity. Such type of groundwater is excellent for all classes of livestock and poultry as per the guidelines <sup>18</sup>. These lower values of EC were observed in the topographically high and well drained areas with non – irrigated agriculture. The groundwater from this area is suitable for all kinds of livestock. 16(23.52%) samples in pre monsoon and 18(26.47%) samples in post monsoon where EC is ranging from  $1000-2999\mu\text{S/m}$ . This type of saline water may cause temporary and mild diarrhea in livestock not accustomed to them or watery droppings in poultry but not affecting their health or performance <sup>18</sup>. 19(27.94%) samples both in pre-monsoon and post-monsoon seasons in the area show EC in the range of 3000 to 4999  $\mu\text{S/m}$  as per the guidelines of suitability of water to livestock. This water is satisfactory for livestock but may cause temporary diarrhea be refused at first by animals. Such type of water is poor water for poultry, often causing watery feces and increased mortality among the livestock <sup>16</sup>. Higher percentages 17(25%) samples in pre monsoon season belongs to higher salinity of groundwater i.e. higher EC 5000-6999  $\mu\text{S/m}$  as compared to 13(19.11%) samples in post monsoon season.

This type of water should not be used for poultry but with reasonable safety can be used for dairy and beef cattle, sheep, swine and horses. It is advisable to avoid this groundwater for pregnant or lactating animals. Such type of groundwater is observed in low lying area which are poorly drained and are under intensive agriculture. 9(13.23%) samples both in pre and post monsoon seasons in the area show EC of ground water lies in between  $7000-10,000\mu$ S/cm which is unfit for poultry and probably for swine. Considerable risk may exist in using these waters for pregnant or lactating cows, horses, sheep, the young of these species or for any animals subjected to have heat stress or water loss<sup>18</sup>. Only one sample (Sr. No. W12) in pre monsoon season show EC higher than  $10000 \mu$ S/cm which is in the downstream part of river. This water is highly saline which cannot be recommended

for the use for livestock under any conditions. The cattle when allowed to drink such type of water, they start suffering from diseases and their pregnancy period is prolonged. Therefore the groundwater from this area is not suitable for poultry, pigs and dairy cattle.

## Hardness of groundwater with regard to livestock use

Hardness is caused by divalent metallic cations that react both with soap to form precipitates and with certain anions to form scale. The principle hardness-causing cations are calcium, magnesium, strontium, ferrous iron and manganous ions. If the water is already high in salinity, softening the water through the exchange of divalent cations with sodium may cause problems. Hardness does not usually affect the palatability or safety of water for livestock. The hardness of livestock waters is measured in order to determine the amount of calcium and magnesium relative to other salts in the water<sup>16</sup>. The hardness in water is also derived largely from contact with the soil and rock formations. In general, hard waters originate in areas where the topsoil is thick and limestone formations are present. Soft water originates in areas where the topsoil is thin and limestone formations are spare or absent<sup>19</sup>. Water hardness is not necessarily correlated with salinity. Saline waters can be very soft if they contain low levels of calcium and magnesium. The principle cations that cause hardness are calcium and magnesium which are usually present at less than 1000 mg/L in water.

On the basis of hardness, groundwater for livestock commonly classified in terms of degree of hardness into following categories <sup>19</sup>.

Soft : < 75 mg/l</li>
Moderately Hard : 75 - 150 mg/l
Hard : 150-300 mg/l
Very Hard :> 300 mg/l

According to above rating the groundwater from the study area are classified. As seen from table 1 & 2, out of 68 samples 2(2.95%) samples in pre monsoon show moderately hard category of groundwater. 7 (10.20%) samples in pre monsoon season and 2(2.95%) samples in post monsoon season show hard category type of groundwater. Remaining all the samples i.e. 59 (86.76%) samples in pre - monsoon and 66 (97.05%) samples in post - monsoon show very hard category type of groundwater. Hard water has not been demonstrated to have either a positive or negative impact on poultry performance. If poultry drinking water is softened, care should be taken to balance the diet for the increased sodium content of the water<sup>20</sup>. Although hardness has no effect on water safety, it can result in the accumulation of scale (mostly magnesium, manganese, iron, and calcium carbonates) in water delivery equipment. The clogging of pipes and drinkers can lead to reduced water consumption and its associated problems<sup>21</sup>.

## Relationship of hardness and alkalinity of groundwater with regards to livestock use

Alkalinity in water is a combined measure of bicarbonates, carbonates and hydroxide ions. Borates, silicates and phosphates are also included, but are usually minor. pH of groundwater ranges from 7.1 to 8.8 and 7.4 to 8.9 during pre and post monsoon respectively which indicates weakly to moderately alkaline nature of groundwater. The slight increase of pH can be attributed to the higher proportion of bicarbonates. In the study area 46(67.64%) samples in post monsoon out 22(32.35%) samples in pre monsoon have alkalinities less than 500mg/l which are not harmful where as the remaining samples i.e. 22(32.35%) samples in post monsoon and 46(67.64% samples in pre monsoon have alkalinities greater than 500mg/l which can cause physiological and digestive upset in livestock<sup>22</sup>. The alkalinities are higher in post monsoon than in pre monsoon indicating concentration dilution effect related to climate. The higher alkalinities are observed in the areas showing rolling topography (S. No. W61, W62 and W67).

This is possibly due to rock-water interaction. Both silicate weathering of basalt and dissolution of carbonates (i.e. calcrete) present in the alluvium are potential source of bicarbonates in the groundwater. Determining both hardness and alkalinity help in interpreting the suitability of water for use by livestock. This information helps to judge what types of salts are present in the groundwater, which is important because some salts are more harmful than others<sup>16</sup>.

When alkalinity equals hardness, salts of calcium and magnesium combined with carbonates and bicarbonates are observed. When alkalinity is less than hardness, salts of calcium and magnesium are more likely to be sulphates (instead of carbonates). Because of an interaction between sulphates and alkalinity, the laxative effects of high-sulphate water will be more pronounced as alkalinity levels increase. When alkalinity is greater than hardness, the presence of sodium and potassium salts in addition to calcium and magnesium are indicated <sup>16</sup>.

By using this criterion, it is observed that (Table-1 and 2), the majority of the samples i.e. 65 (95.58%) samples from post monsoon season and 54(79.41%) samples from pre monsoon season show alkalinity less than hardness. It means that in the study area the presence of salts of calcium and magnesium are more likely to be sulphates instead of carbonates. 3(4.41%) samples in post monsoon and 14(20.58%) samples in pre monsoon season show alkalinity greater than hardness, indicating the presence of sodium and potassium salts in addition to calcium and magnesium. In pre monsoon season, sodium and potassium in addition to calcium and magnesium predominates while in post monsoon season, salts of calcium and magnesium are more likely to be sulphates in the area.

# Sodium in groundwater with regard to livestock use

The primary symptom of sodium deficiency is loss of appetite. In very hot areas this is particularly noticeable in cattle. Reduced growth and milk production and decrease in reproduction may also result. Subsistence on water with a very high sodium content can lead to sodium ion toxicosis, which is diagnosed by high sodium concentration in plasma, cerebrospinal fluid, or brain tissue<sup>23</sup>. Excessive levels of sodium have a diuretic effect. Studies indicate that a sodium level of 50 mg/L is detrimental to poultry performance if the sulfate level is also 50 mg/L or higher and the chloride level is 14 mg/L or higher<sup>20</sup>. Sodium sulfate is a well-known laxative. By themselves, magnesium and sodium normally pose little risk to livestock, but their association with sulfate is a major concern. Water over 800 mg sodium/L can cause diarrhea and a drop in milk production in dairy cows. High levels of sodium may necessitate adjustments to rations because chlorine deficiency may result when removing or reducing salt from swine and dairy rations. In such situation the care should be taken when adjusting rations. Salt may be reduced in swine diets if the sodium in the water exceeds 400 mg/L<sup>3,24</sup>.

The sodium content of the groundwater ranges from 21 to 490 mg/l in pre-monsoon season and 16 to 829 mg/l in post-monsoon season. On the basis of NRC<sup>18</sup> guidelines for sodium the groundwater from study area, it is observed from table 1 and 2 that 9 (13.23%) samples from study area both in pre and post monsoon have sodium less than 50mg/l which have little risk to poultry. These samples lies in the upstream part indicates faster circulation of groundwater attributable to physiography of the area. The remaining 59 (86.76%) samples both in pre and post monsoon season have sodium greater than 50mg/l may affect the performance of poultry if sulphate or chloride is high. All samples except one sample (S. No. W4) from the study area have sodium content less than 800 mg/l. This sample lies in the downstream part of Pravara River. The groundwater from this area is not suitable for livestock use.

# Sulphates in groundwater with regard to livestock use

Sulphates are present in groundwater in the form of sodium sulphate, calcium sulphate and magnesium sulphates. All these have a laxative effect and impart objectionable, bitter taste<sup>16</sup>. Many researchers studied the impact of high sulphate water on animal health and performance<sup>25-28</sup>. The cattle consuming water with 3000mg/l sulfates or greater during the summer at a higher risk of polioencephalomalacia (PEM)<sup>29</sup>. Ruminants consuming high dietary sulphur concentration in combination with high grain diet are at a particular risk for sulphur associated PEM<sup>28</sup>. The negative

response to high - sulphate water does not appear to be as pronounced in grazing cattle. In addition to sulphur associated PEM, high concentration of sulphates can also contribute to copper deficiencies in ruminants. Researchers have clearly demonstrated that the consumption of high sulphate water can result in a decline in liver copper stores in growing cattle. A reduction in copper status can have a negative impact on the health, growth performance and reduction function of livestock<sup>30</sup>.

Keeping this in mind, an attempt has been made to categories sulphate of groundwater from the study area as per the guidelines to the use of groundwater containing sulphate for livestock and poultry<sup>16</sup>. The sulphate content of the groundwater ranges from 2.4 to 216 mg/l in pre-monsoon and in the postmonsoon it varies from 19 to 181 mg/l. It is observed from the table that entire samples in the study area are within the limit specified by National Research Council i.e. less than 250 mg/l. Therefore, the groundwater is safe for livestock use. The sulphate content above 50mg/l may affect performance if magnesium and chloride levels are high<sup>16</sup>. As far as study area is concerned, it is observed from the Table-1 and 2 that 9 (13.23%) samples in post – monsoon season and 13 (19.11%) samples in pre monsoon season have sulphate content less than 50mg/l. The remaining samples have sulphate content higher than 50mg/l may affect the performance of livestock. Higher sulphate level have a laxative effect. The sulphate content is higher in post monsoon may be due to action of leaching and anthropogenic activities. SO<sub>4</sub> is not active in summer season because it is mainly derived from fertilizer sources and farmers do not generally use fertilizer in summer.

Table-4 : Groundwater classification for livestock on the basis of nitrate concentration in the area<sup>18</sup>.

| Nitrate<br>(mg/L) | Comment                                                    | No. and Locations of Samples<br>(Pre monsoon)                                                                                                                                    | No. and Locations of Samples (Post monsoon)                                                                                                                                                                                                                              |
|-------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-44              | No harmful effect                                          | W1,W2,W3,W4,W5,W6,W7,<br>W8,W10,W13,W14,W16,W25,<br>W26,W27,W28,W29,W30,W3<br>4,B37,W39,W40,W47,W49,W<br>51,B55,<br>W56,W58,W60,W61,W63,W6<br>4,W65,W66,W67,W68<br>= 36 (52.44%) | W1,W2,W3,W4,W5,W6,W7,W8,W<br>9,W10,W11,W12,W13,W14,W15,W<br>16,W17,W18,W19,W20,W21,W22,<br>W23,W24,W25,W26,W27,W28,W2<br>9,W30,W31,W32,W36,B37,W38,W<br>39,W40,W41,W46,W47,W48,W49,<br>W50,W51,W52,B55,W56,W57,W60<br>,W61,W62,W63,W64,W65,W66,W6<br>7,W68 = 57 (83.82%) |
| 45-132            | Safe if diet is low in nitrates and nutritionally balanced | W9,W11,W12,W16,W17,W18,<br>W19,W20,W21,W22,<br>W23,W24,<br>W31,W32,W33,W35,W36,W3<br>8,<br>W41,W42,W43,W44,B45,W46,<br>,<br>W48,W50,W52,W53,W54,W5<br>7, W59,W62 = 32 (47.05%)   | W33,W34,W42,W43,W44,B45,W53<br>,W54,W58,W59, = 11 (16.17%)                                                                                                                                                                                                               |
| 133-220           | Could be harmful if consumed over a long period of time    | Nil                                                                                                                                                                              | Nil                                                                                                                                                                                                                                                                      |
| 221-660           | Cattle at risk, possible death losses                      | Nil                                                                                                                                                                              | Nil                                                                                                                                                                                                                                                                      |
| 661-800           | Unsafe, high probability of death losses.                  | Nil                                                                                                                                                                              | Nil                                                                                                                                                                                                                                                                      |
| >800              | Unsafe do not use.                                         | Nil                                                                                                                                                                              | Nil                                                                                                                                                                                                                                                                      |

#### Nitrates in groundwater with regard to livestock use

High concentrations of nitrate in water can poison livestock. Nitrate is almost always found in higher concentration in water supplies than the more toxic nitrite. In ruminant animals and horses (which have acecum), bacteria reduce nitrate to nitrite, which enters the bloodstream and interferes with the ability of haemoglobin to carry oxygen. Animals may die due to lack of oxygen. In poultry and hogs, which have a more simple stomach than ruminants, bacterial conversion of nitrate to nitrite occurs but is less of a problem<sup>31</sup>. If nitrate concentrations are high in a livestock water supply and in the animal's feed, nitrite poisoning is more likely to occur. Feeds like silage or hay cut during drought can contain high amounts of nitrate.

Symptoms of nitrate poisoning include labored breathing, a blue muzzle, trembling, lack of coordination, and an inability to stand. If the animals do not die, they can often recover completely after the nitrate source is removed. Symptoms of acute nitrate toxicity in non-ruminants include clinical signs of restlessness, frequent urination, dyspnoea and cyanosis. Advanced stage may include vomiting, ataxia, convulsions, inability to rise and death. Symptoms of methemoglobinemia include weakness, ataxia, hypersensitivity, dyspnoea, rapid pulse rate, increase in respiration and urination and cyanosis. Nitrogen – related health problems can often be attributed to a wasteful use of nitrogen fertilser. This is well documented for certain forages such as midmar ryegrass (*Lolium multiforum*) and kikuyu grass (*Pennisetum clandestinum*). Unadapted and hungry animals should not be allowed free access to highly fertilizers. Pastures<sup>32</sup>.

In the present study, it is found that nitrate concentrations are higher in pre monsoon than in post monsoon (Table-1 and 2). The nitrate from the ground water in the study area are classified as per the guidelines of NRC<sup>18</sup> (Table-4). It is found that 36 samples (52.44%) and 57 (83.82%) samples in the pre monsoon and post monsoon respectively have nitrate in the range of 0-44 mg/l which has no harmful effect (Table-4) as per guidelines of National Research Council<sup>18</sup>. 32 samples (47.05%) in pre monsoon and 11 samples (16.17%) in post monsoon in the area show nitrate concentration in the range of 45-132 mg/l which is safe if diet is low in nitrates and nutritionally balanced for livestock (Table-4). Overall nitrate concentration in the study area is not harmful for livestock use. The high values of nitrate are observed in the irrigated area which can be attributed to excessive use of chemical fertilizers in the sugarcane cultivating tract.

The groundwater from the villages like Kanoli, Manoli, Rahimpur, Jorve have high concentration of nitrate (Fig.-1). It is also significant to note that area which is thickly populated with residential colonies and industrial sector have high nitrate concentration. The farmers from this area are informed to take care of the livestocks regarding nitrate poisoning.

## Climate change and groundwater quality for livestock use

Climate change will have a substantial effect on global water availability in the future. Not only will this affect livestock drinking water resources, but it will also have a bearing on livestock feed production systems and pasture yield. As climate changes becomes more variable, niches for different species alter. This may modify animal diets and compromise the ability of small holders to manage feed deficits<sup>33</sup>.

The climate has a profound effect on the soil formation processes as well as Chemistry of water<sup>34</sup>. The climate in the study area is characterized by a hot summer and general dryness during major part of the year excepting during southwest monsoon season. The maximum temperature is as high as 42°C whereas the minimum temperature is as low as 10°C during winter. As the area falls under the rain shadow zone of Western Ghats, it receives very low precipitations with the annual rainfall ranging from 300 to 700 mm. The annual average rainfall is 496.5mm and the distribution is mostly uneven. Therefore care is to be taken of the livestock during summer season in the area.

#### CONCLUSIONS

In order to evaluate the suitability of groundwater for livestock use, 68 groundwater samples from Sangamner area were analysed for pH, EC/TDS, alkalinity, hardness, chlorides, sulphates, nitrate and

sodium in pre and post monsoon. The lower values of EC/TDS were observed in the topographically high and well drained areas with non-irrigated agriculture. The groundwaters from this area are suitable for all kinds of livestock. The groundwater from the area (Table-3) with EC higher than 7000-10000µS/cm is unfit for poultry and can be used with considerable risk for pregnant or lactating cows, horses, sheep. This type of groundwater is observed in low lying areas which are poorly drained and are under intensive agriculture. Majority of the groundwater samples in the area show very hard category type of groundwater but it has not shown to have either a positive or negative impact on poultry and other livestock. But it can result in the accumulation of scale in water delivery equipments. Hardness and alkalinity of groundwater both help to determine complete interpretation of suitability of groundwater for livestock use. In the study area, the majority of the samples showed alkalinity greater than hardness indicating presence of salts of calcium and magnesium predominating sulphates instead of carbonates. The majority of the samples in the area in pre and post monsoon season have sodium greater than 50mg/l which affect the performance of poultry when sulphate and chloride is high in the groundwater. The sulphate in the study area is higher than 50mg/l in the majority of the groundwater samples which affect the performance of livestock. The sulphate found to be higher in post monsoon season than in pre monsoon. In the study area, nitrate concentration are higher in pre monsoon than in post monsoon. The nitrate in the study area is not harmful for livestock. The higher nitrate concentration is observed in the irrigated area which can be attributed to excessive use of chemical fertilizers in the sugarcane cultivating tract. The hot summer and dryness in the area is found to affect the health of livestock.

#### Remedial measures

Considering the importance of livestock in maintaining the rural economy of the area, the following remedial measures can be suggested.

- Frequent chlorination of wells at regular interval should be done to fight bacteriological menace and to make the water potable for human and livestock use.
- Prohibit access to cattle / livestock near the storage of water / water pumps.
- Supplying drinking water should be located, designed and constructed in such a way that the groundwater is protected from contamination and wells are used and maintained in a hygienic manner. The well construction should be improved to avoid the possibility of recharge by polluted water through the well lining.
- The education must receive due priority to farmers regarding the better use of groundwater for livestock which are the wealth of our nation.

## REFERENCES

- 1. P Mathur and P Tomer, *Int. J. Chem. Sci*, **9** (**3**), 1319(2011).
- 2. N.J. Pawar, G.L. Pondhe and S.F. Patil, *Environ. Geol.* **34(8)**, 1165(1998).
- 3. J.F. Patience, J. McLeese and M.L. Tremblay, Water quality implication for pork production, *Proceedings of the 10<sup>th</sup> Western Nutrition Conference, Sasktoon, Saskatchewan,* (1989).
- 4. J.P. Sykes, Animals, fowl and water, Year Book of Agriculture, USDA, Washington D.C. (1998).
- 5. Martin Queller E., Moreno D. Mateos, C. Pedrocchi, J. Cervantes and G. Martinez, *Environ Monit Assess*, **167**, 423(2010).
- 6. W.J. Showers, C.M. Williams and G.D. Jennings, *Int. J. of Poultry Science* **5**(**4**), 318(2006).
- 7. Hao Xiu Zhen, Zhou Dong-Mei, Chen Hnai-Man and Dong Yuan- Hua, *Pedosphere*, **18(1)**, 69(2008).
- 8. E.A. Clark, Canadian J. of Plant Science, **78**, 181(1998).
- 9. A Ravel, S Brazean, P Berthiaume, P Michel and M Bigras Poulin, *Bio System Engineering*, **105**, 82(2010).
- 10. W.C. Darrell Corkel, Schutzman and R. Clint. Hilliard, *J. of Toxicology and Environmental Health, Part A, Current Issues*, **67(20-22)**, 1619 (2004).
- 11. K.K. Deshmukh, Rasayan Journal Chemistry, 4(4), 770(2011).

- 12. K.K. Deshmukh, *J. Environ, Res. Develop.*, **7(1)**, 10(2012).
- 13. K.K. Deshmukh, Impact of irrigation on the chemistry of groundwater from Sangamner area, *Ph.D. Thesis, University of Pune* (2001).
- 14. M. Rakib Uddin, The natural environment of Pravara River basin and its impact on land utilization, *Ph.D. Thesis, University of Pune* (1984).
- 15. APHA, AWWA and WPCF, Standard methods for the examination of water and waste water, 19th Edition, *American Public Health Association* (1995).
- 16. Dave German, Interpretation of water analysis for livestock suitability, *U.S. Department of Agriculture, South Dakota*, C274, 3-12 (2008).
- 17. N.J. Pawar, Hydrology of the Pune metropolis with special referent to chemistry of surface and groundwater, *Ph.D. Thesis, University of Pune* (1985).
- 18. Singler Adam W and J Bander, Suitability of water for livestock, National Research Council, *National Academy Press South Dakota* (2004).
- 19. Sawyer, Clair N and Perry L. McCarty, Chemistry for sanitary Engineers, 2<sup>nd</sup> Ed. McGraw Hill Series in Sanitary Science and Water Resources Engineering, McGraw Hill, 349-353 (1967).
- 20. Carter, A. Thomas, E. Ronald, Sneed, Drinking water quality for Poultry, North. Carolina Cooperative Extension Service (1996).http://www. Bae.ncsu.edu / programs / extension / publicat / wqwm/pst42.html.
- 21. Monitoba, Evaluating water quality for livestock, Monitoba Agriculture, food and Rural Initiatives (2004).
- 22. O.E. Olson and D.G. Fox, Great plains beef cattle feeding handbook, *GPE 1401*, *South Dakota University, Brookings SD.* (1981).
- 23. D.H. Gould, Polioencephalomalacia, J. Anim. Sci, 76, 309(1998).
- 24. M.E. Smart, D. McLean and D.A. Christensen, The dietary impact of water quality, *Proceedings* of the Tenth Western Nutrition Conference, Saskatoon, Saskkatchewan, (1989).
- 25. K. Kandylis, J. Dairy Science, 67(21), 79(1984).
- 26. M.F. Veenhuizen and G.C. Shurson, J. Am. Vet. Med. Assoc., 201, 487(1992).
- 27. K.E. Tijardes, H.H. Patterson, and B.D. Rops, *J. Anim. Sci*, **82**,113 (2004).
- 28. National Research Council, Mineral tolerance of animals, 2<sup>nd</sup> Ed. National Academy Press, Washington DC (2005).
- 29. H.H. Patterson, P.S. Johnson, and W.B. Epperson., *Proc. of West. Section of Amer. Soc. of Anim. Sci.*, **54**,378 (2003).
- 30. C.L. Wright, J.W. Spears, T.E. Engle, and T.A. Armstrong, *Trace Elements in Man and Animals*, **10**, 759(2000).
- 31. O.E. Olson and D.G. Fox., Great Plains beef cattle feeding handbook. *GPE-1401. South Dakota State University. Brookings, SD.* (1981).
- 32. R.J. Eckard, J. Grass Coc. South Afri., 7 (3), 174(1990).
- 33. IFAD (International Fund for Agricultural Development) Enabling poor rural people to overcome property, *Livestock and Climate Change* (2010).
- 34. J.D. Hem, Study and interpretation of chemical characteristic of natural water, U.S. *Geol. Surv. Water Supply Paper No.* 2254 (1991).

[RJC-1069/2013]